Website Maintenance Announcement – September 19–21
Activities begin at 6:00 PM CT on Friday, September 19 and continue through Sunday, September 21.
During this time, Product functionality will be unavailable
Website Maintenance Announcement – September 19–21
Activities begin at 6:00 PM CT on Friday, September 19 and continue through Sunday, September 21.
During this time, Product functionality will be unavailable
Switches are a fundamental component of local area networks (LANs), including Wi-Fi networks, and they play a crucial role in managing and optimizing data traffic. Learn how RUCKUS ICX switches add value to Wi-Fi 7 Networks.
In a Wi-Fi® network, switching typically refers to the process of routing network traffic between different devices or nodes within the network. It involves the use of network switches to direct data packets from their source to their destination. Switches are a fundamental component of local area networks (LANs), including Wi-Fi networks, and they play a crucial role in managing and optimizing data traffic. Some of the key value adds from switching in wireless networks:
The world is moving towards a more connected future, and reliable Wi-Fi is a crucial component of this transformation. With the advent of Wi-Fi 7, we are set to witness new levels of speed, efficiency, and reliability in wireless networking. However, to fully leverage these advancements, effective switching is critical. Switches play a vital role in facilitating data transmission and routing within wireless networks, and intelligent switches are becoming increasingly important in managing network traffic. In this blog, we will delve deeper into the interplay between switching and Wi-Fi 7 networks. We will explore the significance of high-speed switches in handling increased data traffic and connecting access points to wired network infrastructure. We will also discuss the key benefits of effective switching in Wi-Fi 7 networks, including reducing network congestion and enhancing overall network reliability. Finally, we will look at potential challenges and considerations while implementing switches in Wi-Fi 7 networks.
Wi-Fi 7, the latest wireless networking standard, brings forth a range of features and advancements. With faster speeds and higher bandwidth support, Wi-Fi 7 utilizes new frequency bands like 6GHz to enhance performance and reduce interference. It introduces MU-MIMO (multi-user multiple input, multiple output) and OFDMA (orthogonal frequency-division multiple access) for improved network efficiency and capacity. Devices with Wi-Fi 7 support can take advantage of these advancements for faster and more reliable connections. As Wi-Fi 7 becomes more prevalent in the coming years, more devices are expected to adopt this new standard.
Wi-Fi 7, with its higher data rates and increased capacity, is designed to support high-density environments like stadiums, airports, and convention centers. The backbone of these networks lies in switching, which enables more efficient resource utilization, reduces network congestion, and improves overall performance. Advanced switches, equipped with Layer 3 routing, virtualization, and Quality of Service (QoS), optimize traffic flow, segment networks, and prioritize crucial applications. By harnessing the power of Wi-Fi 7 and intelligent switching, businesses can enhance their digital capabilities, deliver superior user experiences, and gain a competitive edge in today's fast-paced digital landscape.
Wi-Fi 7 offers faster data rates, enabling improved streaming and downloading capabilities. This new technology also enhances network efficiency, reducing lag and boosting overall performance. Switching to Wi-Fi 7 can provide enhanced security features, protecting against potential cyber threats. Although not yet widely available, Wi-Fi 7 is expected to become the standard soon, making it a smart investment for businesses and individuals who want to stay ahead in technology.
Switching plays a crucial role in wireless networking by directing data traffic between devices, including routers. With the introduction of Wi-Fi 7, switching has become even more essential in handling increased data traffic and maintaining network efficiency. The evolution of switching technology has led to support for higher speeds, lower latency, and improved reliability in wireless networks. Different types of switches, such as core switches and access switches, are used to manage data traffic at various levels. Properly configuring switches, including routers, can enhance network performance, reduce downtime, and contribute to effective wireless network design and management.
With Wi-Fi 7 technology, the wireless devices can support a lot more clients parallelly and at higher speeds and efficiency. The wired ports on these APs have also advanced from ‘gigabit’ to ‘multi-gigabit’ capacity and this calls for a multigigabit support on the switches where these will be connected. The access switches must have multiple ‘multi-gigabit’ ports to support many such access points. To avoid any bottle necks in the design, the access switches support higher uplink speeds (10/25Gbps). Additionally, switches offer security features to protect against external threats. Managed switches provide advanced features like VLANs and Quality of Service (QoS) for improved network management. Proper configuration of switches can greatly enhance the functionality and speed of a Wi-Fi 7 network. By leveraging the capabilities of switches, organizations can provide smooth data transmission and efficient routing within their wireless communication systems.
Safeguarding data with security features on switches is a crucial aspect of network security. Network switches play a fundamental role in controlling the flow of data within a local area network (LAN) or data center. To protect the confidentiality, integrity, and availability of data, you can implement various security features on switches. ICX® switches provide enterprise grade protection to avoid any rogue APs from joining the network. Here are some key security features and best practices:
By implementing these security features and best practices on your network switches, you can significantly enhance the security of your data and network infrastructure.
Power over Ethernet (PoE) is beneficial for Wi-Fi 7 devices in several ways:
In summary, PoE provides a convenient and efficient way to power and manage Wi-Fi 7 devices, contributing to the overall reliability, scalability, and cost-effectiveness of the network. It simplifies deployment, centralizes power management, and supports high-power devices, all of which are beneficial for the evolving requirements of Wi-Fi 7 technology.
The RUCKUS ICX family of switches is as shown below:
The majority of the ICX switches have support for high Power over Ethernet (PoE). Each family has different SKUs that support multiple port speed configurations, with and without modular uplink options.
The RUCKUS family of APs is as shown below:
In this, there are APs that have different PoE and port speed requirements. The RUCKUS ICX switches and RUCKUS AP family provides a matrix to serve many use cases.
With varying levels of power budgets on switches and different requirements on the APs, below is one of the combinations in which the different AP and switch families can be paired. Keep in mind, these products can be paired in any combination based on business use case.
Let’s consider a real use case:
There are many ways in which a Wi-Fi network can be designed based on:
Let’s define a problem statement and try to provide a framework to arrive at the solution.
There is an office building with 4 floors, each floor has at least 8 Access Points that are strategically placed to maintain good signal levels throughout the floor. There are users on each floor that walk around with their end devices such as mobiles, laptops, servers, etc. Users are in virtual team meetings, seminars, training, running tests, and compiling software codes as they move from one location in the floor to another. As the users move from one location in the building to another, the end devices that they are carrying also switches from one access Point to another based on many wireless factors such as RSSI, SNR and throughput. During these transitions, the end user would face frequent network disconnections which will result in an interruption in the actual work they were carrying out over the internet. How can a network administrator handle this issue and ensure that they provide a better network coverage without reinventing the entire wheel?
During any of these wireless transitions the end user experience should not get affected. The users must be agnostic of these transitions happening in the backend.
Network connections and security considerations across all APs must be uniform.
There must be no single point of failure due to device failure.
Provide ease of device management and reduce time to implement and troubleshoot the network.
Assuming there are 4 floors with 8 APs per floor, maintain 2 IDF’s per floor on either ends as shown in the diagram below. All 4 switches in sides A and B can be grouped together as a single logical switch using a powerful and well vetted technology called stacking. Then provide multiple uplink connectivity from each of these stacks to the Core switch in the main datacenter. This results in redundant uplink connection as well as redundant access connection in each floor. In case of an emergency the whole of side A goes down, then there is an entire network still functional on side B and hence the employees can still have connectivity through side B.
This also results in 50% reduction in uplink interface usage, which is a huge cost reduction when this solution in deployed in large scale. Let’s prove the above point:
Scenario with no stacking: All 8 switches from both the sides would need an uplink connectivity, this would add up to 8 fiber connections between the core and access layer.
Scenario with stacking: Now only 2 connections, one from each side would suffice the uplink connectivity, but to provide redundancy at link level there can be 2 uplinks from each side which will result in only 4 connections which is 50% savings compared to 8 as seen in the previous scenario.
This is just one of the many reasons why one should care to deploy a solid switching infrastructure to provide superior wireless service. The RUCKUS ICX family of switches provide various options to deploy trusted switches at access, aggregation, and core levels. In fact, the ICX8200 provides a very strong entry level access network with superior PoE offering, stacking capability, powerful compact switch model and a viable solution to collapse access and aggregation layers at the entry level which can result in high cost savings without compromising on quality.
In summary, switching networks are essential in Wi-Fi deployments because they provide the infrastructure necessary for efficient data traffic management, network segmentation, security, scalability, and reliability, all of which are critical for a successful and robust wireless network. Switching network allows users to have more control over the data that flows through the network and takes care of crucial aspects like securing the data from unwarranted access, providing high availability data paths that are redundant and hence can withstand any network disruption that might occur.
Explore our resource library for more technical guides, whitepapers, and case studies to fuel your knowledge -- Here
© 2023 CommScope, Inc. All rights reserved. CommScope and the CommScope logo are registered trademarks of CommScope and/or its affiliates in the U.S. and other countries. For additional trademark information see https://www.commscope.com/trademarks. Wi-Fi and Wi-Fi 7 are trademarks of the Wi-Fi Alliance. All product names, trademarks and registered trademarks are property of their respective owners.